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The stability properties of steady two-dimensional solutions describing convection 
in a horizontal fluid layer heated from below with stress-free boundaries are 
investigated in the neighbourhood of the critical Rayleigh number. The region of 
stable convection rolls as a function of the wavenumber a and the Rayleigh number 
R is bounded towards higher a by the monotonic skewed varicose instability, while 
towards low wavenumbers stability is limited by the zigzag instability or by the 
oscillatory skewed varicose instability. Only for a limited range of Prandtl numbers, 
0.543 < P < 00,  does a finite domain of stability exist. I n  particular, convection rolls 
with the critical wavenumber a, are always unstable. 

1. Introduction 
Convection in a horizontal layer heated from below is widely regarded as the 

simplest example of hydrodynamic instability, and thus has been a subject of intense 
study in the context of the problem of the transition to turbulence. Among the various 
boundary conditions that can be considered the case of stress-free top and bottom 
boundaries with infinite heat conductivity is distinguished because it gives rise to 
simple solutions in the form of trigonometric functions. In  particular, the vertical 
dependence of the motion is independent of the horizontal wavenumber 01 in the linear 
approximation of the problem. While the problem of convection with stress-free 
boundaries has received much attention for its mathematical simplicity, i t  is also of 
interest from the experimental point of view. Experimental realizations are possible 
(Goldstein & Graham 1963) and could become of increasing importance as the novel 
phenomena associated with the limit of stress-free boundaries become more widely 
recognized. 

Nonlinear studies of convection with stress-free boundaries have been popular 
among theoretical fluid dynamicists because the results appeared to be qualitatively 
similar to those for rigid boundaries, which are more difficult to obtain. I n  both cases 
convection in the form of rolls represents the only stable steady solution at low 
Rayleigh number and the instabilities restricting the region of stability in the 
Rayleigh-number-wavenumber (R ,  a)-space seemed to be similar. Siggia & Zippelius 
(1981) pointed out, however, that the zigzag instability involves a nearly undamped 
component of vertical vorticity in the case of stress-free boundaries, while rigid 
boundaries require as much viscous friction for components of motions associated 
with vertical vorticity as for other components. I n  two subsequent papers (Zippelius 
& Siggia 1982, 1983) the authors also studied the skewed varicose instability which 
occurs near the critical point (Rc, a,) for the onset of convection in the (R,  a)-space 
for stress-free boundaries, while the corresponding stability boundary in the case of 
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rigid boundaries is removed from the critical point. The stability analysis applied by 
Zippelius & Siggia, however, includes some restrictive assumptions about the 
wavenumbers of the disturbances, and thus does not capture all mechanisms of 
instability. 

In  this paper the stability of convection rolls with respect to disturbances causing 
small deviations from the two-dimensional structure of motion is analysed for small 
amplitudes A of convection. Oscillatory onset as well as monotonic onset of instability 
are considered. A new instability, the oscillatory skewed varicose instability, is 
isolated and new stability boundaries for the monotonic skewed varicose stability are 
derived. The results suggest that  convection with stress-free boundaries exhibits a 
number of new phenomena not found in the case of rigid boundaries. 

The basic equation for the complex growth rate CT of disturbances is derived in $2. 
Several different cases of instability are analysed in $3, and the stability regime of 
convection rolls is discussed in $4. The paper closes with some remarks on general 
aspects of the problem in $5. 

2. Formulation of the mathematical problem 
We consider a horizontal convection layer of height h with the temperatures T, and 

T,  prescribed at the upper and lower boundaries. Using h as lengthscale, h2/v as 
timescale, where v is the kinematic viscosity of the fluid, and (q- T,) Rpl as 
temperature scale, we can write the Boussinesq equations for the velocity vector v 
and the heat equation for the deviation 8 of the temperature from the static 
distribution in the dimensionless forms 

v - v  = 0, (2 . la)  

( 2 . l b )  
a 
at 

V2v+k8-VX = v ‘VV+-V,  

V 2 8 + R k . v  = P v.V8+--8 , ( 2 . l c )  ( at ” >  
where k is the unit vector opposite to the direction of gravity, and Rayleigh and 
Prandtl numbers are defined as usual : 

V 

V K  K 
, P=-. rq(% - T,) h3 R =  

After introducing the general representation for a solenoidal vector field 

u = V x (V x k $ ) + V  x k@ S$+r@ (2.2) 

we formulate the problem in terms of $ and @ by operating with S. and E *  onto 
equation (2.1 b )  

a a 
at at 

V4A2i5-A2f3 = S*(v.Vv)+-V2A,q5, V2A2@ = e . ( v .Vo)+-A2@,  (2 .3a ,  b )  

where A2 E V 2 -  ( k * V ) z  is the horizontal Laplacian. A Cartesian system of coordinates 
will be used in the following, with the z-coordinate in the direction of k and the origin 
on the lower boundary of the layer. The conditions of vanishing tangential stress and 
infinite conductivity a t  the boundaries can be expressed in the form 

a 2  a 
a z 2  aZ $ = -$ = -@ = 8 = 0 a t  z = 0 , i .  
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According to the analysis of Schliiter, Lortz & Busse (1965) the only possibly stable 
steady solution of (2.lc), (2.3) amd (2.4) near the critical value R, of the Rayleigh 
number is the two-dimensional solution 

$ = Acosaxsinnz+ ..., (2.5a) 

(n2 + a73 
R =  + ~ ( P A U ) ~  (n2 + a2)2 + . . . , 

a2 

(2.5b) 

( 2 . 5 ~ )  

$ = 0,  (2.5d) 

where terms of order An, n 2 3, have not been given explicitly. 

disturbances of the form 
To investigate the stability of the steady solution (2.5) we superimpose infinitesimal 

6 = {J, +A& + A2& + . . .} exp {idx+ iby + ut}, 

J = {$, + AJl + A2@, + . . .} exp {idx+ iby + at}, 

e" = {e", + Ag1 + A2g2 + . . .} exp {idx+ iby + ut} 

( 2 . 6 ~ )  

(2.6b) 

( 2 . 6 ~ )  

where 6n, J ,  and 8, are functions of x and z with the same period in x as the steady 
solution (2.5). The equations to be satisfied by the disturbances (2.6) are 

V4A2 6- A2 e" = 6. [S$* V(S6 + E$) + (SJ + €6) .Vb$] + d 2 A 2  6, (2.7 a )  

V2A2 J = e.[S$*V(SJ+ $) + (6J+ w$)*VS$] + uA2 J ,  (2.7b) 

V ~ O - R A , J  = p{s$-ve"+ ( ~ $ + ~ + ) - v e + ~ 8 } .  ( 2 . 7 ~ )  

We are interested in those disturbances that cause only small deviations from the 
two-dimensional structure of the steady solution (2.5). We shall thus restrict 
attention to small values of the wavenumbers d and b. I n  addition there are 
disturbances with (d2 + b2):  x a,  which will not be considered here since no new results 
beyond those given by Schluter et al. (1965) and Busse (1971) are expected. 

Anticipating that growing disturbances have growth rates u of order A or smaller, 
we find the following solutions for $,, e", and $, which approximately satisfy (2.7) 
with vanishing right-hand side : 

2 

n-1 
6, = sin nz I: dn) exp { (  - 1 iax}, (2.8a) 

2 

e", = sinm I: c(n)(n2+(a+(-l)nd)2+b2)2exp{(-l)niax), (2.8b) 

J ,  = 0. ( 2 . 8 ~ )  

A finite value of Go could be assumed since (2.7b) and (2.4) admit the possibility of 
slowly decaying horizontal flows with vanishing z-dependence. But, since we assume 
that such flows do not occur in the absence of steady convection, the expansion for 
J starts with the term J1. For the average of 9, over the fluid layer, d3)  E ( J , ) ,  
(2.7 b ) yields 

n=i 

2 

(b2 + d2 + CT) (d2 + b2)  d3)  = - I: :dn)[2da + ( -  l)n (d2 + b2) ]  a h 2 .  (2.9) 
n-1 
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The growth rate CT has been included in (2.9) since i t  may be of same order of 
magnitude as d2+b2. For 6, and the following expressions are obtained from 
(2.7a, c) : 

(2.10b) 

where P is defined by 

P = b 2 / ( d 2 + b 2 )  (2.10c) 

and terms of order d in (2.10a) and of order d2 or b2 in (2.10b) have not been given 
explicitly because they will not be needed in the following arguments. 

After inserting (2.9) and (2.10) on the right-hand side of (2.7a,c) we can obtain 
equations for the unknown dn)  with as eigenvalue. By multiplying (2.7a) by 
LIT~,R(") exp (i[( - l ) m  a-d] x-iiby) and ( 2 . 7 ~ )  by 43, exp(i[( - l)m a-d)  x-iiby), 
m = 1 ,  2, adding the two equations and averaging them over the fluid layer, we get 

+ ( -  l ) m + b a ( l  +P) 1 - ( -  1 y q 3 -  c(3) ( a ") 
= 0 form = 1,2 ,  (2.11) 

where the following definitions have been used, 

G = iP2a4, 

2 
2 - 3 ,  

Terms of higher order in d and b than those retained in (2.11) have been neglected 
since they are not needed in the following analysis. In evaluating ql, y2 and q3 the 
property has been used that the wavenumber a of the steady solution is close to its 
critical value a, = n/2/2.  The difference between a and its critical value is only of 
interest in the expression dn), which for small values of a-ae, d and b is given by 

a 4012 

(2.13) 

Equations (2.9) and (2.11) represent a system of three homogeneous equations for 
the unknowns d n ) ,  n = 1,2 ,3 ,  which can be solved if and only if the determinant of 
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the coefficient matrix vanishes. This latter condition gives rise to a cubic equation 
for cr, 

(cr + b2 + d 2 )  cr2( 1 + P ) 2  - r( 1 + P)  ( r ( l )  + 4) - 2A2G) + r( ')r(2) { 
r ( l )  +,(2)- (71+1'2) ( r ( ' ) - r r (2 ) )  d ] - A 4 G 2 1 h 7 2 d 2 }  

a a2 

(2.14) 

which will be discussed in the following section. 

3. Growth-rate analysis 

for which the simple equation 
I n  analysing the roots of (2.14) it  is illuminating to start with the limit d = b = 0 

6{g2( 1 + P ) 2  + B( 1 + P)  2A2G} = 0 (3.1) 

(3.2) 

is obtained. The three roots of this equation, 

q ( 1 )  = -2A*G(1 +P)-l, 042) = g ( 3 )  = 0, 

correspond to disturbances of the form 

p) = $, e"(1) = 8, p) = 0, 

$3) = 0, $3) * 0. 

The changes of the eigenvalues d2) and d3) introduced by small values of d and b 
are the subject of this section. 

We first consider the limit of vanishing d ,  in which case (2.14) reduces to 

cr3( 1 + P ) 2  + a2( 1 + P )  [b2(  1 + P)  + 4A2Gc] + a[t2 + 26(A2G+ (1 + P)  b 2 )  

+ b 2 ( 1  +P) (2G+ F )  A2 + b 2 [ t 2 +  6 ( 2 G + F )  A2+2GFA4] = 0, ( 3 . 4 ~ )  

where the definitions 

have been used. For 6 > 0 all coefficients of crn in (3.4) are positive and all real roots 
cr are negative. The first coefficient that changes sign as 6 decreases is the last term 
on the left-hand side of (3.4). The real root cr which becomes positive can b,e best 
studied if the assumption 1cr1 4 b2 is made. From the general relationship (2.14) the 
equation 

v ~ ( ~ + P ) ~ + ~ ~ ~ ( ~ + P ) ( ( + G A ~ + ~ F A ~ ) + ( ~ + ~ G A ~ ) ( [ + F A ~ )  = 0 (3.4b) 
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follows in this case, which yields the roots 
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- [ -2GA2 - [ - FA2 
1 + P  . = 2 f72 = 

1 + P  
(3.5a, b )  

The maximum value of CT as a function of b is achieved for b2 = 2 ( a , - a ) a  in both 
cases ( 3 . 5 ) .  The conditions for instabilities corresponding to positive growth rates (3 .5)  
are thus given by 

R - R ,  < (R'O'-R,) 1 +- R - R ,  < $ ( R ( O ) - R R , ) f o r a < a C ,  (3 .6a ,b)  [ 4 ( 1 + P )  p2  1 ' 
where R, is the minimum value of R(Of = ( ~ ~ + a ~ ) ~ / a ~ .  I n  the limit P+co (3 .6a)  is 
identical with the zigzag instability criterion derived by Schluter et al. (1965). But 
the conclusions of the latter paper are not correct in the case of finite Prandtl number 
and stress-free boundaries. Siggia & Zippelius (1981) first pointed out the important 
role played by the  component of the velocity field a t  finite Prandtl numbers and 
derived criterion (3 .6a)  for finite Prandtl number. Criterion (3.6b) corresponds to a 
new mechanism of instability. In  contrast to the zigzag instability which corresponds 
to modified disturbances of the second type in (3.3), the new wavy mode represents 
a modification of disturbances of the first type in (3 .3) .  But because the Eckhaus 
instability, to be discussed below, always precedes it,  the new wavy instability is 
unlikely to be important. 

So far the assumption has been made that all roots of (3 .4)  are real. It can be shown 
that for sufficiently small values of b two conjugate complex roots exist. These roots 
have been investigated by Busse (1972). The application of the latter analysis to the 
present problem demonstrates that  the real parts of the complex roots are negative 
as will also become apparent in the analysis described below. Only when R -  R, 
exceeds a finite value of the order P2 does the oscillatory instability occur. 

In  the limit of vanishing b the summation term on the left-hand side of (2.14) 
vanishes, and in lowest order the familiar Eckhaus criterion for instability with 
respect to two-dimensional disturbances is recovered : 

R - R ,  < 3(R(O)-RC). (3 .7a)  

By taking into account terms of the next higher order, the asymmetry of the stability 
boundary with respect to a-a, can be determined. A refined version of the condition 
for instability with respect to  two-dimensional distrubances is thus obtained : 

R - R ,  < 1 8 ~ ~ ( a - ~ ~ , , ) ~  3 - -  [ a:ac(::4 16P 7 6P2 5 ) i  
(3.7 b )  

In  the general case of (2.14), b + 0 + d,  i t  is convenient to obtain expressions for 
v in terms of the expansion 

(T = ~ l o b + ~ o l d + a 2 0 b 2 + ~ , l d b + a o 2 d 2 +  ... , (3.8) 

where the constant terms vanishes because the attention is restricted to modifications 
of the growth rates &), d3). The detailed inspection of (2.14) shows that aol and cl1 
also vanish, since all terms linear in d cancel. For the coefficient vl0 the following 
relationship is obtained : 

(3.9) 
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FIGURE 1. The real part u, of the growth rate as a function of d and b for 
R = 670, a = 2.188 and P = 0.71. 

which indicates instability if for sufficiently small values of /J’ the condition 

(a-~t , )a+$4~G > 0 (3.10a) 

is satisfied. The criterion ( 3 . 1 0 ~ ~ )  for the onset of the monotonic skewed varicose 
instability can be expressed in terms of the Rayleigh number R 

R-R, > a ( a c - ~ ) ? n 2 ,  (3.10 b )  

the form of which indicates that the wavenumber a of rolls must decrease sufficiently 
strongly with increasing Rayleigh number in order to avoid this instability. A 
remarkable property is the vanishing dependence on the Prandtl number. Except for 
this latter property, it resembles the skewed varicose instability in the case of 
convection with rigid boundaries (Busse & Clever 1979), which also occurs for small 
values of b and d in the neighbourhood of the stability boundary. As the stability 
boundary is approached, the maximum growth rate is achieved for b z dg, which 
follows from (3.8) if the result cro2 < 0 is used. This property is evident from 
figure 1, where cr has been plotted as a function of d and b for an unstable point in the 
(R, a )  parameter space. 

I n  addition to the real roots of (3.9), there exist complex roots if (a,-a)/A2 
becomes sufficiently large or if /3 approaches unity. The latter case is of lesser interest 
since the limit /3 = 1 yields the oscillatory mode which has been mentioned above 
and which does not lead to instability in the neighbourhood of the critical Rayleigh 
number for finite Prandtl numbers. In  the former case, however, a new instability 
occurs, which we call the oscillatory skewed varicose instability. In order to determine 
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the region of growth of this instability, terms of higher order in the expansion (3.8) 
must be evaluated. Since crI1 vanishes we obtain for 

cr2 = cr,o+u02d2/b2 

the following relationship from (2.14), 

cr2 P2 

1+P 
-- - (1  - p) M -  Np-1+ 2 P (  1 + P ) - 2 ,  

(3.11) 

(3.12) 

where the definitions 

8(a , -~ t )a  2(3+P)  
-~ N = iP2(1+P) -2 (5+P)  (3.13a, b )  

A2G 3(1+P) '  
M =  

have been introduced. It is easily seen that positive values cr2 can only be obtained 
for M > 0, implying a < a,. The maximum of g2 is reached for 

p2 = N / M ,  (3.14) 

P y 3  + P+ (5 + P): (1  + P):] 
(1+Py 

yielding the condition M > (3.15) 

for instability. This inequality together with relationship (3.14) implies 

( d / b ) ,  > (1 + P): (5+P)-:,  (3.16) 

which shows that the condition p < 1 required by ( 2 . 1 0 ~ )  is satisfied. We note that 
g2 is negative for p2 = 1, i.e. d = 0, as we have anticipated above. Criterion (3.15) 
for instability with respect to the oscillatory skewed instability can be cast into a 
more convenient form by expressing A2 in terms of R - R(O) : 

(01, -a )  a 36n2( 1 + P1)' 
R- R'O) < 

(3 + P) ( y - 2 (  1 + P) + 1 )  + (5 + P): (1  + P)i 
(3.17) 

for instability. 

4. Stability region of convection rolls 
In  contrast with the case of rigid boundaries, where three stability boundaries meet 

a t  the point (R,, a,) of the (R, a)-space, there are five stability boundaries meeting 
at this point in the case of stress-free boundaries. It is thus not surprising that the 
range of stable rolls is much more severely curtailed in the present case. Indeed there 
exists a critical Prandtl number P, below which no stable steady convection flow is 
possible in the neighbourhood of the point (R,, ac).  This phenomenon occurs when 
R and u satisfy either criterion (3.10b) or criterion (3.17) for instability, and P, is 
determined by 

1 1 = (&p)'[5--p+3P+3(P2+6P+5): 4 , 

which yields the value P, = 0.543. (4.2) 
Zippelius & Siggia (1982, 1983) find a new instability for P < 0.782, which resembles 
the monotonic skewed varicose instability, but corresponds to relatively large values 
of d such that the disturbance wavevector lies in the region where the conducting 
state is stable. The place where the stability boundary corresponding to this new 
modified skewed varicose instability meets the Eckhaus stability boundary determines 
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FIGURE 2. The tangents of the angles that define the boundaries of the wedge-like area within which 
rolls are stable in the (R, a)-plane are shown as a function of the Prandtl number P. The angle 
of the stability boundary for monotonic skewed varicose instability is independent of P ;  the curve 
on the left side of the figure corresponds to the oscillatory skewed varicose instability. 

in their analysis the Prandtl number below which no stable convection rolls exist. 
Pu'either in the present analysis nor in the numerical computations of Bolton & Busse 
(1984) was evidence for the modified skewed varicose of Zippelius & Siggia 
found - apparently because i t  disappears as terms of higher order than those included 
by Zippelius & Siggia are taken into account. Terms of higher order not included by 
Zippelius & Siggia also change the properties of the ordinary monotonic skewed 
varicose instability. Zippelius & Siggia derive the criterion a > a, for the onset of 
this instability, while the more accurate criterion is given by inequality (3.10b). 

The region of stable rolls also tends to  disappear in the limit of large Prandtl 
number. The intersection of the zigzag stability boundary with the skewed varicose 
stability boundary is responsible for this property. According to (3.6) and @.lob) ,  
rolls are unstable a t  any value of a for 

R-R, 192(l+P) 
(4.3) 4 9 P  ' 

Of course this inequality is strictly valid only for small values of R- R(O) and thus 
applies for large Prandtl numbers P x R,,(R- R,). 

For finite Prandtl numbers the stability region of convection rolls is a scissor-like 
wedge opening to the left of a, in the (R, a)-space as Pexceeds P,. The Prandtl-number 
dependence of the angle of this wedge is shown in figure 2 .  Finite-amplitude 
computations, which will be reported elsewhere (Bolton & Busse 1984), show that 
the two stability boundaries forming the wedge tend to become parallel as R increases. 
For large Prandtl numbers the parabolic boundary of the zigzag instability closes in 
rapidly and limits the region of stable Rayleigh number according to criterion (4.3). 

> 
Rc 
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5 .  Concluding remarks 
In  the analysis described in this paper a minimal use of formal asymptotic 

expansions has been made, since the small parameters of the problem, such as A ,  6, 
d and a-a,, enter in the equations in a variety of diffcrent ways. A more rigorous 
mathematical formulation of the problem would have led to a very cumbersome 
analysis. Thc main omission concerns terms of higher order in A ,  primarily those of 
order A4, because terms of odd powers in A do not enter expressions for the growth 
rates. Terms of order A* are not important, however, sirice they do not change the 
property that the growth rates dl), d2) vanish in the limit d ,  b + O .  All results 
dcrived in this paper have been checked against independently derived numerical 
results, which do not depend on restrictions on the amplitude of convection. The 
numerical stability analysis of the convection rolls has been carried out in closc 
analogy to the corresponding analysis for rigid boundaries (Clever & Busse 1974; 
Busse & Clever 1979). Besides providing an independent confirmation of the 
analytical results reported in this paper, the numerical analysis to be reported in a 
separate paper (Bolton & Busse 1984) extends these results to high Rayleigh numbers. 

The most surprising result of the present analysis is the phenomenon that 
convection rolls setting in a t  the critical Rayleigh number become unstable as soon 
as the Rayleigh number increases beyond the critical value. The skewed varicose 
instability may lead to a change of the wavelength of the rolls, and steady rolls may 
be realizable for a limited range of Rayleigh numbers provided that the Prandtl 
number exceeds the critical value P,. Experimental evidence about the skewed 
varicose instability in the case of rigid boundaries suggests a different scenario. As 
Gollub, McCarriar & Steinman (1982) have demonstrated, random variations of the 
convection pattern on a slow timescale are introduced when the boundary of 
instability with respect to skewed varicose disturbances is reached. Convection with 
stress-free boundary conditions offers the attractive possibility of investigating this 
phenomenon in the weakly nonlinear limit of the basic equations. 

The support of the research reported in this paper by the Atmospheric Sciences 
Section of the U.S. National Science Foundation is gratefully acknowledged. 
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